De bliver åbenbart IKKE særligt gamle ift mange af de andre
fisk, jeg hentede dem ved Kenneth i Istedgade i Dec 2015 da han lukkede ned, da var de igang med at yngle og "fuldvoksne" så hunnen har været ihvertfald 2,5 år i alt inden hun døde.
Jeg tror ikke de "skifter køn" som andre
fisk kan, og hvis jeg har forstået det med levealder rigtigt har min han heller ikke super lang tid tilbage, så tror jeg skal have gang i en nyt par.
Hvad er jeres erfaringer mht. Levealder?
Her er lige en ordentlig røvfuld fakta.
Sakset herfra:
http://eol.org/pages/223575/details" onclick="window.open(this.href);return false;
Breeding Biology:
Banggai Cardinalfish pairs defend territories jointly and for three likely reasons: 1) spawning site defense (viewed as unlikely because spawning sites do not seem to be limiting), 2) partner defense (females defending brooding males), and 3) to avoid spawning attempts by "sneaker male" (Kolm and Berglund 2004). Contrary to predictions for a sex role-reversed species, and all other apogonids studied to date, males assume the role of the principal aggressor towards intruders in their territories prior to brooding (Kolm and Berglund 2004). For both males and females, however, territorial aggression is greater towards intruders of the same sex. In experimental introductions of larger male intruders into territories held by male-female pairs, the intruding male was unable to replace the resident male even though the resident female may have courted the intruder; as well, males never courted intruding females. Because this species may have roles that are sexually equivalent, male and females likely play different roles in the defense of jointly-held territories (Kolm and Berglund 2004).
As with other cardinalfishes, the Banggai Cardinalfish is an obligate paternal mouthbrooder (Hayashi 1999). Reproductive behavior was filmed in situ by Dr. Masayoshi Hayashi (Yokusuka City Museum, Yokusuka, Kanagawa, Japan) and the film was broadcast on Japanese television in 1998. Other details on reproductive behavior were obtained from additional laboratory and field studies. Under laboratory conditions, P. kauderni reproduces throughout the year. Single females in captivity can reproduce once per month, whereas males mouth-brood up to six clutches per year. Females, under laboratory conditions can be reproductively active at about 9 months of age and 35 mm SL. The smallest female with signs of advance gonadal maturation found in the wild was 41 mm SL (Vagelli 1999, Vagelli and Volpedo 2004). Females initiate courtship and use a variety of different behavioral patterns during courtship interactions (Vagelli 1999, Kolm 2001). Between a few days and up to two weeks prior to courtship and spawning, a pair will separate from the main group of fishes, establish a spawning site, and commence territorial behavior (Vagelli 1999, Kolm and Berglund 2004). A secondary male may be allowed into the territory and be courted by the female although this male did not interfere with courtship of the primary male (Vagelli 1999). Spawning and juvenile release (settlement) in the wild appears to follow a lunar cycle, with a major spawning peak during full moon and a second, smaller peak during the last quarter, although in one geographically-distinct population major spawning activity occurs during the last quarter (Vagelli and Volpedo 2004). Courtship occurs during daylight hours and, in laboratory conditions, concludes by mid-afternoon. At the time of spawning and egg transfer, the female exudes an egg mass from her genital papilla that is pulled, fertilized, and then gulped by the male. P. kauderni possesses low fecundity, females produce small egg clutches of up to about 75 eggs of 2.53-mm in diameter. The mean clutch size found being incubated by males in the wild was 41 eggs (range=12 to 73) (Vagelli 1999, Vagelli and Volpedo 2004). The male broods an egg clutch for about 20 days; after hatching, the eleutheroembryos (free embryos) remain within the mouth cavity for another 10 days before release. Under laboratory conditions, a female would also court and even spawn with a secondary male (Vagelli 1999). Following spawning and egg transfer, females defend the brooding male from intruders while males manipulate egg masses within their oral cavities; occasionally, intruders attempt to take eggs from a males mouth. The fertility rate under laboratory conditions is about 40 to 60%. Besides normal loss due unfertilized eggs and embryos that do not finish developing, an important percentage of eggs are lost during the clutch transfer (Vagelli 1999). Males do not feed while incubating the eggs; upon hatching some 20 days after spawning, the embryos are held an additional 10 days until their yolk is consumed. Then, the juveniles, about 5.0 to 6.0 mm SL, are released from the male's oral cavity. A major settlement peak appears to occur during the full moon and a second minor peak during the new moon (Vagelli and Volpedo 2004). Vagelli (1999, 2004b) and Kolm (2001, 2002) provide laboratory studies of the reproductive biology and early ontogeny of this species, while Vagelli (2004a), Vagelli and Volpedo (2004) and Vagelli, 2005 provide data from field studies. Principal characteristics of the reproductive biology include: 1) parental care of an advanced degree, 2) an elevated level of energy investment per offspring, 3) low fecundity, 4) direct development, 5) a lengthy oral incubation period that includes the retention of free embryos after the eggs hatch, 6) settlement of juveniles within the habitat of their parents (Vagelli and Volpedo 2004).
The sex ratio within groups is approximately equivalent (Vagelli and Volpedo 2004). Longevity in captivity can reach 4 to 5 years (although reproductive activity decreases substantially after 2 to 3 years). However, in the wild most adult specimens are significantly younger (about 2 years old or less). Growth studies in captivity and using wild specimens show P. kauderni follows von Bertalanffy equation L = 69 1.58 mm, k = 0.21 0.016, t0 = -0.72 0.15 months (r= 0.99). At 12 months of age P. kauderni reaches a SL of about 43.5mm (TL of 64.5mm), at 18 months 47mm (70 mm TL). The largest wild specimen encountered was about 58 mm SL (88.5 mm TL) (A. Vagelli, pers. comm. on 27th Feb 2007).
Resilience:
This species has a relatively short life span (ca. 2.4 years), matures at an average of 0.8 years (FishBase 2004) and has a generation time of 1.5 years (A. Vagelli, pers. comm. on 27th Feb 2007); these are all indications of reasonably good resilience. Unfortunately, this species' small population size, limited distribution, low fecundity, great parental investment, and rate of extraction lower this species resilience with corresponding severe negative effects. The combination of a lack of planktonic dispersal and particular oceanographic characteristics of the Banggai region (deep channels and strong currents) has likely contributed to the extreme philopatry of this species. In addition, its within-parental habitat recruitment, sedentary nature, and shallow habitat preference preclude P. kauderni from dispersing even to nearby islands and have led it to a high degree of genetic structure (Bernardi and Vagelli 2004). P. kauderni is especially susceptible to indiscriminate collecting, e.g., its association with shallow microhabitats greatly facilitates its capture, while the lack of dispersal mechanisms make it almost impossible for this species to re-colonize areas where they have been depleted (A. Vagelli, pers. comm. on 27th Feb 2007).
This species is highly prized in the aquarium trade and thus highly vulnerable to over-fishing, post-capture mortality, and habitat destruction.