"MÅNEDENS AKVARIE" Se denne måneds akvarie HER.

Artikel vedr brug af ozon

Forum for generel snak omkring saltvand.
Besvar
Brugeravatar
Engelquist
Site Admin
Site Admin
Reactions:
Indlæg: 3982
Tilmeldt: fre 28. maj 2004 20:19
19
Postnummer: 4600 Køge
Saltvand siden?: 1993

Artikel vedr brug af ozon

Indlæg af Engelquist »

Spændende artikel vedr effekterne ved brug af ozon:

Application of Ozone in Marine Parks
and Large Aquariums

Les applications de l’ozone dans les Parcs marins
et les grands Aquariums

Joel V. JOHNSON

ENARTEC, Inc. 4542 Ruffner St., San Diego, CA 92111, USA

ABSTRACT

Paper focuses on the application of ozone in marine mammal and large aquarium life support systems (LSS). The term “LSS” describes the unique water treatment systems used to process re-circulated water in large aquariums and marine parks. Five water quality parameters are covered. First, the paper discusses the role ozonation has with organic carbon: changes in initial color, the effect of ozonation when combined with the biological components of LSSs, and how organic matter may compete with ozobromination chemistry. Second, the role of ammonia (NH3), ammonium (NH4+), nitrite (N02-), and nitrate (N03-) in aquariums and their relationships to ozonation. Third, ozone dosages used to control harmful microorganisms are compared to dosages use in the drinking water industry, and the production of hypobromous acid as a byproduct with ozonation of natural seawater is addressed. Forth, pH ranges used in marine mammal and fish aquariums are compared with resulting ozone chemistry. Last, the role ozonation plays in clarifying water is discussed.


RÉSUMÉ

Cet article traite des applications de l’ozone dans les systèmes de support à la vie (SSV) des mammifères marins et des grands Aquariums. Le terme “ SSV ” décrit le système de traitement des eaux typiquement utilisé dans les grands Aquariums et les parcs marins. Dans un premier temps, l’article expose les concepts entourant les SSV et les objectifs de qualité d’eau : le rôle de l’ozone avec le carbone organique, son impact sur la couleur, l’effet de l’ozone combiné aux composantes biologiques des SSV et la façon dont la matière organique pourrait entrer en compétition avec l’ozobromination. Ensuite, le rôle de l’azote ammoniacal (NH3), de l’ion ammonium (NH4+), des nitrites (NO2-) et des nitrates (NO3-) dans les aquariums et leur relation avec l’ozone seront abordés. Les dosages d’ozone utilisés pour contrôler les microorganismes pathogènes sont comparés aux dosages utilisés dans l’industrie de l’eau potable et la production d’acide hypobromique comme sous-produit de l’ozonisation de l’eau de mer est évoquée. De plus, les gammes de pH utilisées pour les mammifères marins et les poissons ainsi que les réactions d’ozonisation résultantes sont comparées. Enfin, le rôle de l’ozone dans la clarification de l’eau est discuté.
INTRODUCTION

This paper discusses the role of ozone in Marine Parks and Aquariums from the perspective of water quality parameters. Water quality needs for marine mammal exhibits include: oxidation of organic molecules, minimizing or eliminating chloramine, controlling bacteria, adjustment of pH, and providing clear water for viewing. Water quality needs for aquariums include: removal of color, biological filtration, nitrate removal, disinfection, providing a suitable pH, balancing dissolved gasses, and maintaining clear viewing.


COLOR AND ORGANIC CARBON

Often when ozonation is first brought on line, a dramatic reduction in color transforms the appearance of an aquatic facility. The transformation is the result of ozone’s efficacy in breaking carbon bonds of color causing chromophore compounds.
Even though , ozone is one of the strongest oxidizing agents, in practice it may or may not have an effect, depending on the rate at which a reaction proceeds. This selective property is most pronounced in reactions with organic compounds. For instance, urea has ozone reaction rate of 0.05 M-1 s-1 while dimethylamine has an ozone reaction rate of 20,000 M-1 s-1 (Hoigue, 1983). For moderate reacting biological waste compound, ozone can eventually facilitate oxidation, given enough cycles though the ozone contactor in a re-circulated system. While ozone is reactive with certain organic compounds in natural waters, with the end carbon compound being CO2, other organic compounds are resistant to oxidation by even prolonged ozonation (Takahashi, 1990). Continued ozonation does, however, create organic molecules of easily biologically assimilable organic carbon (AOC); and the increase in AOC can be measured by a one-to-one decrease in ultraviolet light absorbance (Kooij, 1989). While the total organic carbon (TOC) remains relatively unchanged by ozonation alone, the AOC component can be significantly reduced when ozonation is combined with biological filtration.
Some modern life support systems for marine mammals use ozonation of natural seawater to carry a disinfecting residual of hypobromous acid into the pool as a result of ozobromination. Organic matter, however, can play an important role in effectiveness of ozobromination since both halogens and natural organic matter compete for ozone. While ozone has a moderate reaction rate of 160 M-1 s-1 with the bromide ion (Haag,1983), natural organic matter (NOM) can have a higher demand for ozone. Depending on the source and concentrations involved, NOM can out compete the bromide ion (Br-) for ozone by an order of magnitude (Westerhoff, 1998).


AMMONIA, NITRITE AND NITRATE

Ammonia and its nitrogen derivatives are of crucial importance in aquariums due to toxicity to fish, and in marine parks due to combined compounds which irritate soft tissues of marine mammals. Ammonia, nitrite and nitrate offer no benefits and only reduce water quality with increasing concentrations. The oxidation of ammonia (NH3) results in nitrite (N02-), and the oxidation of nitrite results in nitrate (N03-). This process of nitrification is usually carried out by biological means in aquariums. It is an important process, since with each step the toxicity to fish is greatly reduced (Spotte, 1979).
Ozone has drastically differing reaction rates with ammonia (NH3), ammonium (NH4+), nitrite (N02-), and nitrate (N03-). In aquariums, ammonia is produced by fish and uneaten food, then biologically converted to nitrite and then to nitrate. Since ammonium (NH4+) and ammonia (NH3) have a pKa of 9.3, “seawater” with a pH of 8.3 has nine times more NH4+ than NH3. In waters with neutral pH, almost all the species is represented by NH4+, ammonium; and with a reaction rate constant of 0.00 M-1 s-1, ammonium does not react with ozone (Hoigne, 1983). For ozone to have a chance in converting ammonia into nitrite, the pH of the water must be close to the pKa value or higher; however, is does so very slowly because the reaction rate constant is very slow at only 20 M-1 s-1. Therefore biological nitrification is much more effective in converting ammonia to nitrite.
Biofiltration is an essential unit process for sustaining fish by ammonia assimilation through biological oxidation. Fish produce ammonia, which becomes toxic at concentrations on the order of 0.1 mg NH4 /L (Spotte, 1979). Nitrification in aquariums is the biological process resulting in the oxidation of ammonia into nitrite and less toxic nitrate. Heterotrophic bacteria can remove the easily assimilable portion of dissolved organic carbon (Kooij, 1989). Once the dissolved organic carbon is assimilated, the bacteria itself, then must be removed from the system for total organic carbon removal. Ozonation assists the biological process with the conversion of larger organic molecules into more biologically assimilable compounds.
Nitrite is very interesting when combined with ozone since, with a rate constant of 3.7x105 M-1 s-1, it reacts almost instantaneously (Hoigne, 1983). Nitrite will preferentially react with the ozone, which presents a situation, which can result in “over-ozonation”, when combine with biofiltration. If the biological conversion of nitrite to nitrate has not been established, LSS operators may respond by turning the ozone dosage up to the maximum. As time progresses, Nitrobacter bacteria may quickly multiply and then rapidly reduce the nitrite concentration resulting in excessive residual ozone.
When part of nitrate, the nitrogen atom cannot then be further oxidized, so ozone does not help in removing nitrate. Concentrations of nitrate in aquariums on the order of hundreds of mg/l are thought to be detrimental to fish. Nitrate is typically removed in open aquatic LSS by dilution or in closed LSS using a bioremediation processes, known in the aquarium industry as denitrification.
For marine mammals, chlorine may be used to provide a residual disinfecting agent, with ozone used to reduce the amount of chlorine dosed (along with other beneficial effects). Chloramine is a concern for marine mammals, when ammonia from animal waste combines with chorine. Chloramines can be irritating to both animals living in the pool and trainers working with the animals. Ozone has a low reaction rate of 26 M-1 s-1 with monochloramine (NH2Cl), and a much faster reaction rate of 120 M-1 s-1 with the hypochlorite ion of 120 M-1 s-1. Because hypochlorous acid (HOCl) and hypochlorite (OCl-) are in equilibrium with a pKa of 7.42, at pH values below 7.0, there is some oxidation of chloramine while at typical pH values for seawater ozone reacts preferentially with OCl- and other constituents, and does not oxidize chloramine due to its slow rate of reaction with ozone.


HARMFUL MICROORGANISMS

Disease causing microorganisms need to be controlled in aquatic facilities, and ozone can destroy harmful microorganisms by direct oxidation or indirectly by the formation of germicidal byproducts. In aquariums, harmful organisms include: parasites, which can cause infections; viruses, resulting in Lymphocystis; vibrio disease causing bacteria such as Aeromonas and Pseudomonas; fungus, which may invade vital organs; protozoans, such as dinoflagellates, which can cause external and mouth infections; and flatworms, which may attach externally to the fish (Spotte, 1973). In marine mammal facilities, E. coli is used as an indicator organism and allowable fecal coliform counts are regulated by the Marine Mammal Protection Act (Fed. Reg. June 22, 1979). Effective ozone disinfection is governed chiefly by the following mechanisms: transfer efficiency, good mixing, adequate contact time, and minimal short circuiting in the contactor. This criteria suggested by the U.S. EPA (EPA/625, 1986) reflects trends in current LSS technology for the use of venturi ozone injectors and pressure contactor/degassers.
As opposed to oxidation reactions, disinfection by ozonation is not measured by reaction rate constants. It is gaged by the decrease in viable organisms with a given a level of dissolved ozone over a finite period of time. The following table of values published by the US EPA uses C•T values, in units of residual ozone concentration in mg/L times time in minutes, to compare the efficacy of hypochlorous acid against ozone for 99% inactivation:


Pathogen
Cryptosproidium oocyst
Giaridia lamblia
E. coli

Req’d Chlorine C•T
7200
47 to 150
0.04
Req’d Ozone C•T
5 to 10
0.6
0.02

The very small C•T value for inactivation of E. coli with ozone lends credence to the lower ozone dosages and short contact time used in LSS technology when combined with the inherent advantage a recirculated system has over the course of time. Research has also demonstrated that levels of dissolved ozone as low a 0.01 mg/L can result in two to four log-reductions in E. coli (Finch and Smith, 1990).
The path of ozone reactions can play an important role in the ability of ozone to disinfect. pH, alkalinity and the conversion of ozone to hydroxyl radicals have a significant effect on disinfection. For instance, when ozone is converted to hydroxyl radicals, while the oxidizing potential may be increased, the disinfecting power is lost due to rapidly decreasing concentration.
Oxidation of the bromine ion by ozone is an important occurrence resulting in hypobromous acid as the chief germacidal byproduct. The formation of hypobromous acid is given by the following reaction equation (Haag, 1983).

O3+ Brˉ | O2+ OBr

In seawater there is a relatively high concentration of bromide ion, approwimately 67 mg/L (Spotte, 1979), which has an ozone reaction rate constant of approximately 160 M‾1 s‾1 (Hoigne, 1983). The reaction of ozone in “seawater” is fairly swift with a half-life of ozone of 5.3 seconds (Haag, 1983). The germicidal affect of hypobromous acid (HOBr) is analogous to hypochlorous acid (HOCl) and the effectiveness as a disinfectant is similar (McCarthy, 1944). Since HOBr/OBr- has a pKa of 8.5, and the range for pH of ocean waters is from 7.9 to 8.3, the effectiveness of hypobromous acid is much less difficult to control than that of hypochlorous acid. In LSSs for marine mammals using natural seawater and an adequate dose of ozone, the hypobromous "byproduct" is an effective residual disinfectant.


pH


The pH of the water is a significant factor in innumerable chemical processes occurring in both marine mammal and aquarium situations, including animal health, effectiveness of residual halogens, and the decomposition rate of ozone. Ocean waters have a pH close to 8.3, while for animal health reasons, pH values in the range of 7.5 to 8.3 are acceptable (Spotte, 1973). As previously mentioned, hypobromination resulting from ozobromination is effective at the pH values found in natural seawater. However, when ozone is combined with chlorination, for appreciable disinfection it is important to maintain pH close to or under the pKa value of 7.42.
Theoretically, ozonation can destroy available chlorine when water is in the higher pH range. Recall there is a 50/50 balance between hypochlorous acid (HOCl) and hypochlorite (OCl-) when the pH is 7.42. With a reaction rate constant of 0.002 M-1 s-1, ozone does not react with HOCl. Ozone can destroy OCl- to form mostly the chloride ion (Cl-), and to a smaller proportion, the chlorate ion (ClO3-). However, in practice ozone will have a preference to react with other compounds and has only a minimal effect on chlorination.
Ozone decomposes at a linear increasing rate above pH of approximately 7.5 with the rate of decomposition an order of magnitude higher at pH of 9.0 compared to pH of 8.0 (Langlais, 1991). With increasing pH, ozone is converted into extremely short-lived hydroxyl radicals (OH.). As stated above, while the hydroxyl radicals react quickly with many organic compounds, they are not as effective for disinfection due to very small obtainable C•T values. Certain compounds if present may further promote the conversion of hydroxyl radicals into superoxide anions (O2-), which having a rate-reaction constant of 1.5 x 109 M-1 s-1, rapidly destroy dissolved ozone. As a result, the disinfecting ability of ozone is increasingly diminished as pH values rise above 8.0.


TURBIDITY

Ozonation is well known for producing extremely clear water, an effect which is particularly true in recirculated systems. The microflocculation process promoted by ozonation is chiefly responsible for clarifying water in combination with sand media filters. First, ozone, being a strong oxidant, can change surface charges of colloidal-sized particles which then colide to form suspended solids. The larger particles can then be trapped in the filters. The second avenue for microflocculation is ozonation in the presence of polyvalent metallic cations, such as aluminum or iron, leading to flocculation of oxidized organics. Typically, organic compounds have a negative change and thus, repel each other while Al(OH)x+ and Fe(OH)x+ can adsorb to the surface of the negatively charged compounds producing an overall neutral charge.


CONCLUSION

While the term “water quality” is used universally, it only has meaning specifically. In this paper we have reviewed a wide variety of situations, even within the field limited to marine parks and large aquariums, where the effectiveness of ozone is dependant on the chemical situation. While the interrelationships are great in number, many of the challenges concerning ozonation at marine parks and large aquariums have been explained in drinking water and waste water literature.


REFERENCES

1986.- Municipal Wastewater Disinfection-. Design Manual. United States Environmental Protection Agency, EPA/625/1-86/021.
Fed. Reg.. June 22, 1979.- Marine Mammal Welfare Act-. Animal and Plant Heath Inspection Service, USDA, Animal Health and Husbandry Standards. Water quality. Ed 1-1-85 . Section 3.106.
FINCH, G.R.; SMITH, D.W., 1990.- Pilot-Scale Evaluation of the Effects of Mixing on Ozone Disinfection of Escherichia coli in a Semi-Batch, Stirred Tank Reactor-. New Developments: Ozone in Water and Wastewater Treatment. Spring Conference, Norwalk, CT: Intl. Ozone Assoc., Pan American Group, pp. 381-390.
HAAG, Werner R. and Jürg HOLGNÉ, 1983.- Ozonation of Bromide-Containing Waters: Kinetics of Formation of Hypobromous Acid and Bromate-. Scl. Technol. Journal. pp. 261-267.
HOIGUE, Jürg and H. BADER, 1983.- Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water–I, II and III- Water Resources. Articles I and II in Vol. 17. No. 2 (I & II). Sequel article III in Vol. 19, No. 8, 1985.
D. van der KOOIJ, W.A.M. HIJNEN, and Jun LU , 1989.- The Effects of Ozonation, Biological Filtration, and Distribution on the Concentration of Easily Assimilable Organic Carbon (AOC) in Drinking Water-. Ozone Science & Engineering. Volume 11, Number 3, Summer 1989.
LANGLAIS B., 1991.- Ozone in Water Treatment- Application and Engineering-. AWWA Cooperative Research Report . Lewis Publishers, pp 14-15.
MCCARTHY, BRAND J.W., 1944. -CIO as Water Disinfectants-. Journal New England Water Works Assoc. 58:55-68, 1944.
SPOTTE S., 1973.- Marine Aquarium Keeping. New York: John Wiley & Sons.
SPOTTE S., 1979.- Seawater Aquariums. New York: John Wiley & Sons.
TAKAHASHI, N., 1990.- Ozonation of Several Organic Compounds Having Low Molecular Weight Under Ultraviolet Irradiation-. Ozone Science & Engineering Journal, Winter 1990, Volume 12, Number 1.
WESTERHOFF P., SONG R., AMY G., and MINEAR R., 1998.- NOM’s Role in Bromine and Bromate Formation During Ozonation-. Journal American Water Works Association. February 1998, Volume 89, Issue 11.


Bo Engelquist Christiansen
”Modvind er en god ting – når man skal den anden vej”.– Storm P.

Min vandpyt: https://www.saltvandsforum.dk/viewtopic ... 93&t=95414
Brugeravatar
Engelquist
Site Admin
Site Admin
Reactions:
Indlæg: 3982
Tilmeldt: fre 28. maj 2004 20:19
19
Postnummer: 4600 Køge
Saltvand siden?: 1993

Re: Artikel vedr brug af ozon

Indlæg af Engelquist »

Især disse to afsnit er værd at bide mærke i:

Harmful Microorganisms

Disease causing microorganisms need to be controlled in aquatic facilities, and ozone can destroy harmful microorganisms by direct oxidation or indirectly by the formation of germicidal byproducts. In aquariums, harmful organisms include: parasites, which can cause infections; viruses, resulting in Lymphocystis; vibrio disease causing bacteria such as Aeromonas and Pseudomonas; fungus, which may invade vital organs; protozoans, such as dinoflagellates, which can cause external and mouth infections; and flatworms, which may attach externally to the fish (Spotte, 1973). In marine mammal facilities, E. coli is used as an indicator organism and allowable fecal coliform counts are regulated by the Marine Mammal Protection Act (Fed. Reg. June 22, 1979). Effective ozone disinfection is governed chiefly by the following mechanisms: transfer efficiency, good mixing, adequate contact time, and minimal short circuiting in the contactor. This criteria suggested by the U.S. EPA (EPA/625, 1986) reflects trends in current LSS technology for the use of venturi ozone injectors and pressure contactor/degassers.

Turbidity

Ozonation is well known for producing extremely clear water, an effect which is particularly true in recirculated systems. The microflocculation process promoted by ozonation is chiefly responsible for clarifying water in combination with sand media filters. First, ozone, being a strong oxidant, can change surface charges of colloidal-sized particles which then colide to form suspended solids. The larger particles can then be trapped in the filters. The second avenue for microflocculation is ozonation in the presence of polyvalent metallic cations, such as aluminum or iron, leading to flocculation of oxidized organics. Typically, organic compounds have a negative change and thus, repel each other while Al(OH)x+ and Fe(OH)x+ can adsorb to the surface of the negatively charged compounds producing an overall neutral charge.


Bo Engelquist Christiansen
”Modvind er en god ting – når man skal den anden vej”.– Storm P.

Min vandpyt: https://www.saltvandsforum.dk/viewtopic ... 93&t=95414
Brugeravatar
niels228
Foxface
Foxface
Reactions:
Indlæg: 309
Tilmeldt: ons 2. apr 2014 19:51
9
Postnummer: 3450 Allerød
Saltvand siden?: 2014

Re: Artikel vedr brug af ozon

Indlæg af niels228 »

Så er spørgsmålet så bare om nogen bruger ozon og hvordan.

Hvad er det bedste system?


Akvarier skal vejes i ton.
Brugeravatar
Engelquist
Site Admin
Site Admin
Reactions:
Indlæg: 3982
Tilmeldt: fre 28. maj 2004 20:19
19
Postnummer: 4600 Køge
Saltvand siden?: 1993

Re: Artikel vedr brug af ozon

Indlæg af Engelquist »

niels228 skrev:Så er spørgsmålet så bare om nogen bruger ozon og hvordan.

Hvad er det bedste system?
Jeg tilsætter ca 50 mg/h via skummeren 24/7.
Der er en lille studs på luftindtaget i min Nyos skummer, beregnet til ozon...


Bo Engelquist Christiansen
”Modvind er en god ting – når man skal den anden vej”.– Storm P.

Min vandpyt: https://www.saltvandsforum.dk/viewtopic ... 93&t=95414
Amazonas
Dværg kejser
Dværg kejser
Reactions:
Indlæg: 120
Tilmeldt: ons 10. jan 2018 19:46
6
Postnummer: 5500 Middelfart
Saltvand siden?: 2010

Re: Artikel vedr brug af ozon

Indlæg af Amazonas »

Jeg tilsætter ozon gennem min skummer. Der er dog en Aqua medic controler der slukker for ozon hvis tilsætningen bliver for høj


Brugeravatar
niels228
Foxface
Foxface
Reactions:
Indlæg: 309
Tilmeldt: ons 2. apr 2014 19:51
9
Postnummer: 3450 Allerød
Saltvand siden?: 2014

Re: Artikel vedr brug af ozon

Indlæg af niels228 »

Bruger så en ozon generator eller flaske?


Akvarier skal vejes i ton.
Brugeravatar
Engelquist
Site Admin
Site Admin
Reactions:
Indlæg: 3982
Tilmeldt: fre 28. maj 2004 20:19
19
Postnummer: 4600 Køge
Saltvand siden?: 1993

Re: Artikel vedr brug af ozon

Indlæg af Engelquist »

niels228 skrev:Bruger så en ozon generator eller flaske?
Ozon generator (Sander)


Bo Engelquist Christiansen
”Modvind er en god ting – når man skal den anden vej”.– Storm P.

Min vandpyt: https://www.saltvandsforum.dk/viewtopic ... 93&t=95414
Amazonas
Dværg kejser
Dværg kejser
Reactions:
Indlæg: 120
Tilmeldt: ons 10. jan 2018 19:46
6
Postnummer: 5500 Middelfart
Saltvand siden?: 2010

Re: Artikel vedr brug af ozon

Indlæg af Amazonas »

Også generator her


Brugeravatar
niels228
Foxface
Foxface
Reactions:
Indlæg: 309
Tilmeldt: ons 2. apr 2014 19:51
9
Postnummer: 3450 Allerød
Saltvand siden?: 2014

Re: Artikel vedr brug af ozon

Indlæg af niels228 »

Amazonas skrev:Jeg tilsætter ozon gennem min skummer. Der er dog en Aqua medic controler der slukker for ozon hvis tilsætningen bliver for høj
Hvilken probe har du så til at styre dit ozon niveau. En O2 eller en PH?


Akvarier skal vejes i ton.
Brugeravatar
Engelquist
Site Admin
Site Admin
Reactions:
Indlæg: 3982
Tilmeldt: fre 28. maj 2004 20:19
19
Postnummer: 4600 Køge
Saltvand siden?: 1993

Re: Artikel vedr brug af ozon

Indlæg af Engelquist »

niels228 skrev:
Amazonas skrev:Jeg tilsætter ozon gennem min skummer. Der er dog en Aqua medic controler der slukker for ozon hvis tilsætningen bliver for høj
Hvilken probe har du så til at styre dit ozon niveau. En O2 eller en PH?
Det er Redox (ORP) man skal holde øje med ikke bliver for højt, ved tilsætning af ozon- man kan styre det med en controller eller bare måle manualt (hvilket jeg gør)
Derudover kan man også bruge lugtesansen- Ozon har en umiskendelig lugt (minder om tordenluft efter mange lynnedslag) Jeg har kun min skruet op så jeg ikke kan lugte ozon over skummeren...
Det holder mit vand krystalklart og parasitterne nede :-)


Bo Engelquist Christiansen
”Modvind er en god ting – når man skal den anden vej”.– Storm P.

Min vandpyt: https://www.saltvandsforum.dk/viewtopic ... 93&t=95414
Brugeravatar
Engelquist
Site Admin
Site Admin
Reactions:
Indlæg: 3982
Tilmeldt: fre 28. maj 2004 20:19
19
Postnummer: 4600 Køge
Saltvand siden?: 1993

Re: Artikel vedr brug af ozon

Indlæg af Engelquist »

Man kan evt læse op på emnet i disse tre artikler:
http://reefkeeping.com/issues/2006-03/rhf/index.php" onclick="window.open(this.href);return false;
http://reefkeeping.com/issues/2006-04/rhf/index.php" onclick="window.open(this.href);return false;
http://reefkeeping.com/issues/2006-05/rhf/index.php" onclick="window.open(this.href);return false;


Bo Engelquist Christiansen
”Modvind er en god ting – når man skal den anden vej”.– Storm P.

Min vandpyt: https://www.saltvandsforum.dk/viewtopic ... 93&t=95414
Amazonas
Dværg kejser
Dværg kejser
Reactions:
Indlæg: 120
Tilmeldt: ons 10. jan 2018 19:46
6
Postnummer: 5500 Middelfart
Saltvand siden?: 2010

Re: Artikel vedr brug af ozon

Indlæg af Amazonas »

Jeg har en Aqua medic redox computer
Har indstillet den til orp ikke kommer over 300, man kan sætte den højere..men kører på det sikre
* når jeg skriver på den sikre side er det fordi jeg ikke vil have alt for ustabilt vand.

Med ustabilt vand mener jeg at hvis det er for “rent” osmosevand kan det meget nemt vælte, da der ikke er en buffer i vandet. Tror mange ikke er er klar over at hvis man ikke har styr på sit vand kan det svinge enormt i PH værdi med deraf følgende fiskedød til følge!

Mange opdager ikke deres vand er gået fra PH 8 til 3 og tilbage uden de fik nogen indikation på det.

Mvh
Den gamle Discus opdrætter


Besvar

Tilbage til "Generel saltvandssnak"